
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the lime for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE 2. REPORT TYPE
Professional Paper

4. TITLE AND SUBTITLE

Integration of the CASTLE Simulation Executive with Simulink

6. AUTHOR(S)

Thomas Magyar
Anthony Page

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Aircraft Division
22347 Cedar Point Road, Unit #6
Patuxent River, Maryland 20670-1161
9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

3. DATES COVERED

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Controls Analysis and Simulation Test Loop Environment (CASTLE) is a Navy in-house developed aircraft simulation executive
application that has been in use at the Manned Flight Simulator (MFS) facility in Patuxent River, Maryland and elsewhere for over 15 years. In
addition to supporting real-time hi-fidelity pilot-in-the-loop simulations in the MFS facility, CASTLE also includes integrated tools used for
development and analysis of airframe simulations on various platforms.

Much of the work with CASTLE includes exchanging and analyzing data with Matlab and Simulink. In support of recent flight controls
projects at Patuxent River, there was a requirement to integrate Matlab-Simulink models with the CASTLE simulation. This led to the
development of a new capability that enables a Simulink model to be modified and executed continuously with the CASTLE simulation,
without having to exit and restart. The only interaction with CASTLE required by the user is to launch the specific airframe executable desired.

15. SUBJECT TERMS

Controls Analysis and Simulation Test Loop Environment (CASTLE); Simulink; Matlab
16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Thomas Magyar / Anthony Page
19b. TELEPHONE NUMBER (include area
code)
(301)757-0852/342-8566

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

20010716 015

AIAA-2001-4121
INTEGRATION OF THE CASTLE SIMULATION EXECUTIVE WITH SIMULINK

Thomas J. Magyar
Anthony B. Page*

Naval Air Systems Command, Patuxent River, MD

Abstract

The Controls Analysis and Simulation Test Loop
Environment (CASTLE) is a Navy in-house developed
aircraft simulation executive application that has been
in use at the Manned Flight Simulator (MFS) facility in
Patuxent River, Maryland and elsewhere for over 15
years. In addition to supporting real-time hi-fidelity
pilot-in-the-loop simulations in the MFS facility,
CASTLE also includes integrated tools used for
development and analysis of airframe simulations on
various platforms.

Much of the work with CASTLE includes exchanging
and analyzing data with Matlab and Simulink. In
support of recent flight controls projects at Patuxent
River, there was a requirement to integrate Matlab-
Simulink models with the CASTLE simulation. This
led to the development of a new capability that enables
a Simulink model to be modified and executed
continuously with the CASTLE simulation, without
having to exit and restart. The only interaction with
CASTLE required by the user is to launch the specific
airframe executable desired.

Using an S-Function (System function) user definable
block in Simulink, a Matlab C-MEX file was created to
interface Simulink with the CASTLE airframe using
TCP/IP networking. In this scheme, when the Simulink
model is executed and the S-Function block is called, a
connection to CASTLE is established and a list of input
and output variable names and values are sent for setup.
The input values to the S-Function are then sent across
the connection to the CASTLE airframe simulation.
The simulation is then run through a simulation frame,
halted, and output values requested are sent across the
connection as the outputs to the S-Function block. This
loop is continued for the duration of the Simulink
model end run time, at which point the connection is
terminated. In this manner, a hi-fidelity airframe
simulation running under CASTLE can be used to
develop, test and evaluate Simulink models of any type.

* Aerospace Engineer, Member AIAA
* Aerospace Engineer, Member AIAA
This paper is a declared work of the U.S. Government and
is not subject to copyright protection in the United States.

Background

The design of the CASTLE software is based on a
C/C++ graphical user interface (GUI) and a C and
FORTRAN airframe executive shell. The CASTLE
environment was designed to be platform hdependent
and is currently hosted on PC's running Microsoft
Windows 98/NT/2000 operating system, DEC Alpha's
running the VMS operating system, and SGI's running
the Unix operating system.

The design of the CASTLE software is very modular on
several levels. It consists of several tasks running
simultaneously, with the CASTLE GUI being the
controlling entity of the simulation in most instances.
Other processes include the actual airframe simulation,
the plotting package and a 3D visualization software
package. The airframe is used for analysis and
development by simulation engineers and in real time
pilot-in-the-loop simulations. These processes
communicate via several methods, including local or
global shared memory, and a TCP/IP protocol. In
addition to these specific processes, CASTLE can
communicate to other external processes by using either
of these methods.

The TCP/IP protocol used with CASTLE is the Data
Transfer Mechanism (DTM) designed by the University
of Illinois National Center for Supercomputing
Applications (NCSA). The use of this protocol allows
the CASTLE tasks to be running on separate machines
if required. Data word format conversions of the
information packets transferred between these tasks are
performed automatically. This was the method selected
to best communicate with the Matlab/Simulink process.
Figure 1 shows the CASTLE processes and the
communication methods among them.

CL
r.r,r\

QPEHPUBIX''1 '

PÜBÜC ^H,^--,

l
American Institute of Aeronautics and Astronautics

!j£ ■"—'■:%■ jaalvö JCBHIVSUW ,;l"*vi.msK)

POaE^SBiESEäJKSSraS!

To Mflilrt

0\fDTM)

Figure 1: CASTLE Design and Communication

Purpose

Much of the work with CASTLE includes exchanging
and analyzing data with Matlab and Simulink.
CASTLE has the ability to import and export data in the
Matlab M-file or MAT-file formats. To expand upon
this current capability and in support of a recent flight
controls project, it was proposed to establish a Matlab
interface with CASTLE, with priority being to
communicate with a working Simulink model.

It was desired to use the hi-fidelity CASTLE airframe
simulation in place of a lower fidelity Simulink model
of the airframe. In this configuration, when executing
the Simulink model, the CASTLE airframe simulation
would obtain inputs and supply outputs to the rest of the
Simulink model. This would continue for the duration
of the model's execution.

During development, the Simulink model can undergo
many changes. In light of this, it was desired to avoid
terminating the current simulation session and
recompiling the airframe source code with each change.
This would greatly facilitate rapid development and
testing.

Most users of this new tool will be experienced with
Matlab/Simulink and will be doing most of their
development and analysis in this environment. It was
desired to control the CASTLE simulation from within
the Matlab/Simulink application, thus minimizing the
time spent switching between applications.

Options

During the initial design phase, two options were
considered that could possibly fulfill the requirements.

Matlab ActiveX Engine

This method uses the Matlab API programmed from
within CASTLE to send commands to the Matlab
workspace. In this scenario, Matlab is treated as the
"server" and CASTLE as the "client". In this mode, all
model setup and execution would be done from within
CASTLE, with no direct interaction with Matlab
necessary.

From within CASTLE, a new facility (GUI window)
would be created to setup the variables to transfer, the
Matlab commands to execute during the simulation run,
and other options to set before execution. Commands
could also specify which Simulink model to load at
simulation run time. During execution of lie normal
simulation loop, CASTLE would divert to the Simulink
model at the appropriate time, sending the necessary
variable values to the workspace. The execution
commands would then be sent, running the Simulink
model. After one iteration of the Simulink model,
CASTLE would request variable values from the
workspace and set them to the appropriate simulation
variables. The loop would continue until simulation
execution is complete.

The Matlab API is straightforward to implement in this
fashion. However, it was unclear how to run a Simulink
model for one iteration and preserve the new state

American Institute of Aeronautics and Astronautics

information, for use during the next loop. Also, this
option would require the user to perform all setup and
model execution from within CASTLE, requiring the
user to toggle back and forth among applications when
developing the Simulink model.

Matlab C-Mex Files and DTM

This method uses C-Mex files together with a Simulink
S-function block and CASTLE's DTM to transfer
information between the processes. In this mode all
model setup and execution of the CASTLE simulation
can be accomplished from within the Matlab workspace
with no interaction with the CASTLE GUI required.

Placing this CASTLE S-function block in a Simulink
model creates a connection to the CASTLE airframe
when executed. Variables to send and receive from the
airframe are declared in the Matlab workspace.

When the Simulink model is executed, a TCP/IP
connection is established to the airframe. The variables
declared in the Matlab workspace are sent to CASTLE
for initialization and a flag is set indicating that a
Simulink model is now part of the CASTLE airframe
simulation loop. Input values to the S-function are
passed to the airframe to overdrive the simulation and
after an iteration of the airframe loop, variable values
are passed back as outputs to the S-function. This
process continues until the Simulink model reaches its
stop time.

Using this method, the control of the simulation could
be maintained in Matlab. Since the Simulink model
could then be run from start time to stop time, the
calculations and state information could be preserved
through each iteration. This was chosen as the preferred
method to fulfill the requirements.

S-Function Design

Under normal circumstances, CASTLE creates a set of
TCP/IP ports to communicate with the airframe, and
another set for use with the 3D visualization software,
CasView. To communicate with Matlab another set of
ports are created on the airframe at program launch, as
shown in Figure 1. The ports are periodically checked
for a Matlab request for connection. Once CASTLE has
been launched, no further interaction with it is
necessary.

S-Function Block Setup

In Simulink, an S-function is a general block that can be
customized to suit the needs that any other Simulink
block can't provide. The S-function block is associated

with a source file that is programmed to define it's
behavior. In this instance, the source file was written in
C and compiled as a MEX-file. This creates a
dynamically linked library (DLL) that is called when
the Simulink model is executed.

To enable the CASTLE airframe to be included in the
Simulink model, a custom S-function block was
created. This block contains three extra input
parameters, in addition to the standard t, x and u that is
supplied with any Simulink S-function.

The first parameter is a cell array of variable names that
are used to indicate to the airframe what variable values
are being passed as inputs before each simulation loop.
This array can be of any size.

The second parameter is a cell array of variable names
that are used to indicated what variables are to be
returned as outputs after the simulation loop. This array
also can be of any size.

The third parameter is a cell array listing any
miscellaneous values that are to be set in the airframe
model before the run is initiated. The values are
retrieved from variables with the same name in the
Matlab workspace during S-function initialization and
sent to the airframe for deposit into the simulation.
This array also can be of any size.

The CASTLE S-function block contains one input port
and one output port, as is always the case with S-
function blocks. To accommodate the arbitrary width
arrays of the input and output parameters, the S-
function was coded to handle dynamically sized inputs
and outputs. However, with any dynamically sized S
function, the input vector width is used to determine the
output vector width, so these numbers must be
identical.

CASTLE S-Function

Figure 2: CASTLE S-function block

To resolve this issue and still allow an arbitrary number
of inputs and outputs, the S-function was written to
accept, and ignore, zero array entries. This "padding"
can be placed on either the input or output vectors to
obtain the same overal vector width.

American Institute of Aeronautics and Astronautics

Model Execution

With the CASTLE S-function in the Simulink model,
the input and output parameters specified, the
miscellaneous values declared and set in the workspace,
and the CASTLE airframe simulation launched,
execution of the model can begin.

Initialization

When the Simulink model is executed, a connection is
attempted with the CASTLE airframe using the DTM
library. If CASTLE is found and is available, the
connection is established.

If successful, the input parameter variable name is
retrieved from Matlab workspace. This cell array is then
parsed and a list of variable names used for input is sent
to the airframe. The airframe checks to be sure that
these variables exist in the simulation before
continuing. These values are then stored in a list by the
airframe. This same method is used to set and confirm
the output variables.

If a third parameter contains entries, these variable
names will be sent to the airframe just as the previous
input and output variables. In addition, the S-function
will look up each variable name in the workspace,
obtain the values, and send them to the airframe. The
airframe will set the values retrieved to the simulation
variables before start of the model.

Execution of the Simulink Model

With initialization complete, the Simulink model will
begin executing its normal loop, calling the CASTLE S-
function. A pointer to the input and output array values
are passed into this function.

If a connection has been established and initialization is
complete the array of input value's to the S-function are
sent to the CASTLE airframe using DTM. The S-
function will then wait for a response from the airframe,
indicating it has completed the simulation loop iteration
and is passing back the required output values.

As the Simulink model is waiting for the outputs, the
airframe obtains the inputs from the S-function. This
array of inputs must match the order that the variable
names were given during initialization. The inputs are
then added to the overdrive list and used to overdrive
the simulation with the current values through the
simulation loop.

A mode flag variable is used in CASTLE to determine
if a Simulink model is being used, which modifies the

run loop appropriately, and is set at this time. With the
flag set, the simulation will run through one iteration
and then set the halt command, notifying the airframe
to halt its run loop at the end of the current iteration. By
halting, or pausing the simulation all variable value
data is preserved for the next iteration.

Simulink Model

Castle S-function
| Get Inputs

Send to Airframe

Set Outputs

Airframe
Deposit Inputs

Sim Loop

Return Outputs

Figure 3: Model Execution

After the loop is complete, the values from the output
variables requested during initialization are retrieved
and sent back to the CASTLE S-function in the
Simulink model. The CASTLE airframe will then wait
for the next packet of information from the Simulink
model. The next packet will either be another input
values packet, indicating another iteration of the
simulation loop, or a termination packet, indicating the
run is complete.

Control then transfers back to the S-function. Upon
receiving the output values packet, the values are
unpackaged and set as the output values from the S-
function. The Simulink model then continues, repeating
this order of execution until the end time is reached.
Figure 3 illustrates the complete process.

Upon termination a packet is sent to the CASTLE
airframe indicating completion of the run. The airframe
resets the mode flag and both terminate the connection
to one another.

A Utility Function

In order to set the initial conditions and trim the
airframe before a run, a separate utility function was
developed as a C-Mex file, and is used to set and issue
commands to the CASTLE airframe from within
Matlab. This can be executed by the user before
running the Simulink model. This function has three
arguments.

The first argument contains the command to perform.
Possible commands currently are "Trim" and "Reset".

American Institute of Aeronautics and Astronautics

The second argument is a cell array of the airframe state
variable names whose values are to be set. The values
are retrieved from variables with the same name in the
Matlab workspace.

The third argument is an array of variable names whose
values should be passed back to the Matlab workspace
after the command has been executed. This argument is
optional. If specified, these values will be returned in an
array to the left-hand side of the equation. The values in
the returned array are in the same order as those in the
third argument. These values can then be used to set
variable values in the Matlab workspace or Simulink
model. Figure 4 illustrates the method of calling the
function, either from the Matlab command prompt, or
an M-file.

Figure 4: Calling 'executecasO' function

Example Applications

The S-function shown in Figure 2 allows the use of the
highest fidelity CASTLE airframe models directly in
Matlab/Simulink simulations. This new capability
should prove beneficial for a wide variety of users. For
users familiar with Matlab/Simulink but not with
CASTLE, the new capability allows access to the
highest fidelity airframe models with very little spool
up time. For the control law and flying qualities
analysts who do much of their analyses in Matlab, this
will lead to less switching back and forth between
applications when running simulations interactively.
For control law researchers and developers, this will
allow the design and modification of control laws to be
carried out in Matlab/Simulink and then tested directly
using the highest fidelity airframe model available.
Therefore, control law researchers and developers can
take advantage of Matlab's powerful features and
Simulink's graphical interface when developing control
laws and then rapidly transition to testing the designs
using the CASTLE simulation model without re-coding
the control law designs in C or FORTRAN.

Since the CASTLE S-function can be incorporated into
any Simulink simulation, it should be useful in a variety
of engineering design and analysis problems. However,
a couple of examples should sufficiently illustrate some
of the potential applications.

Pilot Input

Aircraft flight control systems and flying qualities are
often evaluated based on vehicle response to pilot
inputs.4 These inputs can be open-loop such as a step,
doublet, or sine sweep or the inputs can be the result of
performing some closed-loop maneuver such as a bank
angle capture or a windup turn to a specified load
factor.

As a simple example, consider a longitudinal stick
doublet as illustrated in the Simulink diagram shown in
Figure 5. In order to run this Simulink simulation, the
CASTLE airframe simulation must first be launched.
After the desired CASTLE model is launched, no
further direct interaction with CASTLE is required.
However, the user can interact with CASTLE as desired
to set the aircraft loading and initial conditions. For the
current example, a settings file is loaded from within
CASTLE that places a clean F/A-18C at a low dynamic
pressure flight condition. At this point, the CASTLE
model may either be trimmed interactively or from
within Matlab using the 'execute_cas' function of
Figure 4.

long_stick

 k
Input J

pc

Const

1 k
smcas —*• y doublet ►

jnt

CASTLE

S-Function

Output

(padding)

Figure 5: Simulink Diagram for Pilot Input

Now, all that is required within Matlab before running
the Simulink simulation is to set the inputs, outputs,
and miscellaneous variables used by the CASTLE S-
function. For the F/A-18C/D, the following Matlab
commands are issued:

cas_inputs= {'STLON'}
cas_outputs = {'QB\ 'THET', 'ALFA'}
cas_vars = {'DO_STORE'}
DO_STORE = 1

The first command sets the input to be the longitudinal
stick position. The second command sets the outputs to
be the pitch rate, pitch angle, and angle of attack. The
next command tells the CASTLE S-function to get the
value for the CASTLE variable DO_STORE from the
Matlab workspace. The final command sets this value
to 1 in the Matlab workspace and is used to instruct
CASTLE to save its digital output. Since the CASTLE

American Institute of Aeronautics and Astronautics

S-function requires an equal number of inputs and
outputs, the input to the CASTLE S-function must be
padded with a two-element vector whose values will be
ignored by the model (See Figure 5).

Now, the Simulink simulation can be run in the usual
manner. Note, with the current formulation of the
CASTLE S-function, the Simulink model is required to
use the first order ordinary differential equation solver
with a fixed step size equal to that specified in the
CASTLE simulation. Future versions of the CASTLE
S-function should relax this requirement.

The results from running the simulation are given in
Figure 6 and show the normalized pitch rate response
due to the longitudinal stick doublet. As a point of
interest, if it were also desired to output the load factor
response, then the cas_outputs cell array would simply
be appended with the appropriate variable name. Since
this would bring the total number of outputs to four, the
input padding vector would also need to be increased to
contain a total of three elements. The Simulink
simulation could then be re-run without any need for
the user to directly interact with CASTLE. This ability
to modify the input/output of the CASTLE S-function
as well as to modify the Matlab/Simulink model on the
fly (i.e., without having to stop or re-start either Matlab
or CASTLE) should prove exceptionally valuable to the
user.

1.5

1

0.5

0

-0.5

-1

of attack, and angle of sideslip that the controller is
designed to track.

-1.5

 8srici(/ max(8stick)

(

■

0 4 6
Time (sec)

10

Figure 6: Pitch Rate Response to Stick Doublet

Adaptive Control

In this example it is desired to analyze the performance
of a nonlinear adaptive control approach used in
conjunction with an advanced control allocation
routine.5 The top level Simulink diagram is shown in
Figure 7. Here, a third order command generator is used
to provide smoothly varying values of bank angle, angle

kr ' 1
Output

H

CASTLE
S-Function

Öpla
~C>&_

Ösurf

 br^

AutothrotU«

öcom —£~*?^ hJ MATLAB
Funotion <xßlc \ "" i« •♦ r*
FJIIUICS

iptfv« Controll«! Ad Cemmjnd

Figure 7: Simulink Diagram for Adaptive Control

The control law is an adaptive backstepping design
based on a two-loop dynamic inversion controller. In
the outer loop, desired values of the angular rates (co =
[p q r]T) are used as virtual controls to perform tracking
of the outputs (()>, a, ß). In the inner loop, tracking of
the desired angular rates leads to the control allocation
problem that must be solved to determine the control
effector commands (5com). Various stability derivatives
and control effectiveness parameters are estimated on-
line using a Lyapunov approach to ensure convergence
of the tracking error. A failure module is used to inject
actuator failures in the command path and a separate
autothrottle is used to provide throttle commands (5p|a)
in an attempt to maintain constant velocity.

In this case, the inputs to the CASTLE S-function
consist of the throttle and surface actuator commands.
The output of the CASTLE S-function consists of the
normal aircraft state information as well as other values
of interest. Again, the input is padded as needed to give
an equal number of inputs and outputs. In contrast to
the example with pilot input, the production control law
calculations in the CASTLE simulation are bypassed as
the CASTLE simulation is being overdriven by the
actuator commands calculated by the Simulink model's
controller. If desired, CASTLE's actuator model
calculations can also be bypassed by selecting the
surface positions instead of the actuator commands as
inputs to the CASTLE S-function.

Again, before the Simulink model simulation can be
run, the CASTLE airframe model must be launched and
any desired settings file loaded. Since the adaptive
controller needs information about the initial state of
the airframe model, the 'executecas' function is used
to trim the simulation. Namely,

American Institute of Aeronautics and Astronautics

results = execute_cas('TRJM', in_yars, out_yars)

where invars is a cell array containing the variable
names for altitude and airspeed and outvars is a cell
array containing the variable names for the throttle
position, surface positions, and a flag that indicates
whether or not the trim operation is successful. Before
the 'execute_cas' command is issued, the desired
altitude and airspeed are defined in the Matlab
workspace using the associated CASTLE variable
names. After the command is executed, the trim
positions are read from the results vector and passed to
the adaptive controller for initialization.

After the CASTLE model has been trimmed as
described above and the input and output variable
names for the CASTLE S-function have been defined in
the Matlab workspace, the Simulink simulation can be
executed as normal. Figure 8 shows the tracking results
for a low dynamic pressure flight condition using the
adaptive backstepping control law with a Direct
Allocation control allocator.5 Tracking performance is
seen to be very good with all outputs closely tracking
the commanded values. Figure 9 shows results for the
same commanded maneuver but with an aileron failure
(hardover) one second into the simulation. Although
there is some performance degradation, the controller
remains stable and provides good tracking response.

Conclusions

Combining the many capabilities of the CASTLE
simulation environment with Matlab and Simulink was
successful and accomplished in a manner to allow the
use of any Simulink model with any CASTLE airframe
model. The high-fidelity CASTLE airframe model can
now operate as part of the overall Simulink model,
being controlled from within Matlab. This integrates all
setup and development to the Matlab application by
using the CASTLE S-function and the 'execute_cas'
utility function. Once CASTLE and the airframe are
initially launched, the Simulink model can be modified
continuously and re-run without having to perform a
rebuild or relink of the airframe source code. The
airframe and Matlab/Simulink operate independently
until the time of model execution allowing the option of
using CASTLE or Simulink in its normal standalone
fashion if desired between integrated runs. This new
capability to CASTLE versions 5.6 and later should
greatly enhance the ability to develop, test and evaluate
Simulink models with a hi-fidelity airframe model.

<t>c / max(<|>c)

(j) / max(ij>c)

10 15

<Xc / max(ac)

a / max(otc)

0 10 15

5 10

Time (sec)

Figure 8: Tracking Results (No Failures)

4><= / max(i)>c)

<j> / max(<j>c)

10 15

0.5

a<: / max(Oc)

a / max(Oc)

10 15

0 5 10
Time (sec)

Figure 9: Tracking Results (Aileron Hardover)

American Institute of Aeronautics and Astronautics

References

[1] Nichols, J.H., Magyar, T.J., Schug, E.C., "The
Platform Independent Aircraft Simulation Environment
at Manned Flight Simulator", AIAA Paper No. 98-
4179, AIAA Modeling and Simulation Technologies
Technology Conference, Boston, MA, 1998.

[2] Mathworks Inc., "Using Simulink", Simulink 2
Documentation, 1997

[3] Mathworks Inc., "Application Program Interface
Guide", Matlab Documentation, 1998.

[4] MIL-STD-1797A, Military Standard, Flying
Qualities of Piloted Aircraft, 30 January, 1990.

[5] Page, A., and Steinberg, M., "Effects of Control
Allocation Algorithms on a Nonlinear Adaptive
Design," AIAA Paper No. 99-4282, AIAA Guidance,
Navigation, and Control Conference, Portland, OR,
1999.

American Institute of Aeronautics and Astronautics

